
Finding Elo: Restructuring Chess Ratings

Background

In 6th grade, I decided to join the Chess club at my school. The night
before our first meeting at 12:30am (a record-breaking time for me to be
awake till at the time), I woke up my dad and asked him to teach me how to
play chess. We went over the basic rules of how pieces move, and I watched
a few YouTube videos on basic openings. With my newfound knowledge, I
woke up the next morning and was ready to test my skills against others…
Surprisingly, I didn’t win a single game.
But from that night onwards, I was hooked. I studied chess openings,
obsessed over increasing my chess.com rating, and constantly got
click-baited by videos online that would supposedly make me a Grandmaster
overnight. To my dismay, that wasn’t the case––but, I found a new passion.
By 9th grade, I was already playing my second inter-school tournament and
our team won a bronze medal! Here are my results as depicted in Figure 1
and a photo from my first tournament in Image 1! Image 1: My First Tournament

But there was a point where I completely stopped playing
chess for 2 years. High School, tell me about it. One day, I
went on chess.com and played a game for fun––I got
checkmated in less than 20 moves. That’s analogous to the
outcome of me playing a 1v1 against LeBron James. My true
Elo rating decreased dramatically in those 2 years, but I only
lost a few rating points! Figure 1: My First Tournament Results; 5 W/4 L

Thinking about my own experiences made me interested in how a player’s time off from playing affects how their
rating should increase or decrease when they play again. The current Elo system does not take this into account.
Through this paper, I will explore the Chess rating system through a probabilistic lens––incorporating concepts of
gaussian distributions, bayesian inference, scaling factors, and code-based simulations. I have created a new rating
system that accounts for a player’s time since their last game using concepts learnt in CS109.

What is the Elo System?
The Elo system was invented by Árpád Élő, a Hungarian-American physics professor, and was adopted by
the US Chess Federation in 1960. It forms the basis of how players are compared to one another (using a
numeric scale) in games such as Chess, Basketball, Football, etc. as depicted in Figures 2 and 3:

1

http://chess.com
http://chess-results.com/tnr211530.aspx?lan=24&art=9&fed=UWC&turdet=YES&snr=14

Figure 2: World Chess Elo Rankings Figure 3: Warriors Elo Graph 2016-19 Playoffs

How the Elo Rating System Works

Probabilities of Each Outcome

= Rating of Player A.𝑅
𝐴

= Rating of Player B.𝑅
𝐵

Let’s break this down into 3 cases where both players plays each other 100 times:
1. If > : We expect Player A to have more points than player B i.e > 50 points.𝑅

𝐴
𝑅

𝐵

2. If = : We expect Player A and Player B to have approximately the same number of points ~50𝑅
𝐴

𝑅
𝐵

3. If < : We expect Player A to have less points than player B i.e < 50 points.𝑅
𝐴

𝑅
𝐵

The Elo formula for calculating Player A’s expected score against Player B is modelled using a logistic
regression. Here is the derivation:

(explained later)𝑃(𝐴 𝑤𝑖𝑛𝑠)
𝑃(𝐵 𝑤𝑖𝑛𝑠) = 10

𝑅
𝐵

−𝑅
𝐴

400

𝑃(𝐴 𝑤𝑖𝑛𝑠) = 10
𝑅

𝐵
−𝑅

𝐴

400 · 𝑃(𝐵 𝑤𝑖𝑛𝑠)

𝑃(𝐴 𝑤𝑖𝑛𝑠) = 10
𝑅

𝐵
−𝑅

𝐴

400 · (1 − 𝑃(𝐴 𝑤𝑖𝑛𝑠))

𝑃(𝐴 𝑤𝑖𝑛𝑠) = 10
𝑅

𝐵
−𝑅

𝐴

400 − 10
𝑅

𝐵
−𝑅

𝐴

400 𝑃(𝐴 𝑤𝑖𝑛𝑠)

+ =𝑃(𝐴 𝑤𝑖𝑛𝑠) 10
𝑅

𝐵
−𝑅

𝐴

400 𝑃(𝐴 𝑤𝑖𝑛𝑠) 10
𝑅

𝐵
−𝑅

𝐴

400

= + =𝑃(𝐴 𝑤𝑖𝑛𝑠)(1 10
𝑅

𝐵
−𝑅

𝐴

400) 10
𝑅

𝐵
−𝑅

𝐴

400

=𝑃(𝐴 𝑤𝑖𝑛𝑠) 10
𝑅𝐵−𝑅𝐴

400

1 + 10
𝑅𝐵−𝑅𝐴

400

Using a special definition of a logistic curve (base10) from the Bernoulli
Differential Equation: (a complex proof that is not the focus of this paper):

=𝑃(𝐴 𝑤𝑖𝑛𝑠) 1

1 + 10
𝑅𝐵−𝑅𝐴

400

uses the same principle but has - as we compare Player B's strength relative to Player A:𝑃(𝐵 𝑤𝑖𝑛𝑠) 𝑅
𝐴

𝑅
𝐵

=𝑃(𝐵 𝑤𝑖𝑛𝑠) 1

1 + 10
𝑅𝐴−𝑅𝐵

400

Now, we can extend Axiom 3 of Probability(as discussed in Lecture 3: Probability, Slide 18) that states:

"𝐼𝑓 𝐸 𝑎𝑛𝑑 𝐹 𝑎𝑟𝑒 𝑚𝑢𝑡𝑢𝑎𝑙𝑙𝑦 𝑒𝑥𝑐𝑙𝑢𝑠𝑖𝑣𝑒 (𝑖. 𝑒 𝐸 ∩ 𝐹 = Ø), 𝑡ℎ𝑒𝑛 𝑃(𝐸 ∪ 𝐹) = 𝑃(𝐸) + 𝑃(𝐹)"

2

https://en.wikipedia.org/wiki/Logistic_function#Logistic_differential_equation

Our sample space, , is the probability of Player A winning, , Player B winning, . If both of these𝑆 𝑃(𝐴) 𝑃(𝐵)
are equal to 0.5 then expected outcome is a draw! and cannot occur simultaneously––they are𝑃(𝐴) 𝑃(𝐵)
mutually exclusive. Thus, we find that:

 𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵)
 𝑃(𝑆) = 𝑃(𝐴) + 𝑃(𝐵)

By Axiom 2 of Probability, and by Axiom 1 of Probability, any probability must range from [0, 1]𝑃(𝑆) = 1

1 = 𝑃(𝐴) + 𝑃(𝐵)
∴ 𝑃(𝐵) = 1 − 𝑃(𝐴)

Expected Score

is also known as the Expected Score, , of player A. That is, the expected number of points𝑃(𝐴 𝑤𝑖𝑛𝑠) 𝐸(𝐴)
they will score against a player of a certain rating. Recall that point range from 0 for a loss, 0.5 for a draw, and
1 for a win. However, while the outcomes may be fixed numbers, the expected value does not––it need not be
either 0, 0.5, or 1––it can take on any value from 0 to 1, inclusive. The way the logistic regression works is: if
player A has a rating 400 points higher than player B, they are 10 times more likely to win against player B; the
base value of 400 was chosen based on the scale developed uniquely for the Elo system. We can show this
concept using the formula we derived above:

= = =𝐸(𝐴) 1

1 + 10
𝑅𝐵−𝑅𝐴

400

1

1 + 10
−400
400

1
1.1 = 0. 9 ⇒ 90% 𝑐ℎ𝑎𝑛𝑐𝑒 𝑜𝑓 𝑤𝑖𝑛𝑛𝑖𝑛𝑔

= = =𝐸(𝐵) 1

1 + 10
𝑅𝐴−𝑅𝐵

400

1

1 + 10
400
400

1
11 = 0. 09 ⇒ 9% 𝑐ℎ𝑎𝑛𝑐𝑒 𝑜𝑓 𝑤𝑖𝑛𝑛𝑖𝑛𝑔

player A is 10 times more likely to win against player B𝐸(𝐴)
𝐸(𝐵) = 0.9

0.09 = 10 ⇒

Updating a Player's Elo Rating
We now know how the Elo system calculates a player's expected score, but how does it update their rating?

Let:
= player A's current rating𝑅

𝐴

= player A's new rating after a result𝑅'
𝐴

= the expected value of player A𝐸
𝐴

= player A's actual score i.e 1 for win, 0 for loss, 0.5 for draw𝑆
𝐴

= scaling factor (higher s.f corresponds to a lower rating/less experience. 40 is the highest in Elo)𝐾

𝑅'
𝐴

 = 𝑅
𝐴

 + 𝐾(𝑆
𝐴

 − 𝐸
𝐴

)

Let's do an example, but I'm tired of arbitrary players A and B. In CS109, one of the things I
always look forward to is Jerry's "The Day's CS109 Briefing" email. I particularly enjoy the
sections about Doris. Here are two snippets that really caught my attention:

3

Date: Mon 1/30/2023

Date: Wed 2/1/2023

Dirk is upset—he was dumped in 3 days?! He challenges Evan to a game of (dog) Chess in hopes to win
Doris over…after a grueling match, Dirk wins! Let's see what their new ratings are when given their initial
ratings: and (let K = 40). We need to first calculate their expected scores:𝑅

𝐷
 = 1600 𝑅

𝐸
 = 1500

= = =𝐸
𝐷

 = 1

1 + 10
𝑅𝐸−𝑅𝐷

400

1

1 + 10
1500−1600

400

1

1 + 10−0.25 0. 64

= = = (=)𝐸
𝐸

 = 1

1 + 10
𝑅𝐷−𝑅𝐸

400

1

1 + 10
1600−1500

400

1

1 + 100.25 0. 36 1 − 𝐸
𝐷

We can use a graphical approach to visualize the logistic regression and Dirk’s expected number of points:

Graph 1: x-axis measures a player’s rating and the x = 1600 line represents Dirk’s rating. The y-axis is the
expected points when playing against Evan whose rating is 1500. This yields 0.64. Play around with it here!

Dirk’s New Rating Evan’s New Rating

𝑅'
𝐷

 = 𝑅
𝐷

 + 𝐾(𝑆
𝐷

 − 𝐸
𝐷

)

= 𝑅
𝐷

 + 𝐾(𝑆
𝐷

 − 𝐸
𝐷

)

= 1600 + 40(1 − 0. 64)
= 1600 + 40(0. 32)
= 1600 + 14. 4
𝑅'

𝐷
= 1614. 4

𝑅'
𝐸

 = 𝑅
𝐸

 + 𝐾(𝑆
𝐸

 − 𝐸
𝐸

)

= 𝑅
𝐷

 + 𝐾(𝑆
𝐷

 − 𝐸
𝐷

)

= 1600 + 40(0 − 0. 36)
= 1500 + 40(− 0. 36)
= 1600 − 14. 4
𝑅'

𝐸
= 1585. 6

While Dirk won the Chess game, he didn’t win Doris back; I guess she’s not interested after their antics:

4

https://www.desmos.com/calculator/cbwzfjibda

Issues with the Elo System and Focus of this Paper
While the Elo system works very well, there are 2 primary flaws I noticed:

Critique Explanation

Does not
account
for how a

player
wins,

draws, or
loses

If Dirk had beat Evan simply because Evan ran out of time despite Evan crushing Dirk in
the game, does that actually make Dirk a better player? Why should Evan lose 14.4 points
for moving his pieces too slowly? It would be fairer for him to only lose half of those points.
On the other hand, if Dirk had won because Evan resigned and accepted defeat, I feel that is
a more legitimate method of being a better chess player. Though, this depends on the
definition of what makes someone a “better” chess player.

These are only a couple of examples. However, I feel that these concerns are not practical
for chess rating systems to incorporate. It may even require human judgment, and keeping
track of many factors becomes difficult, especially for chess sites that have millions of users.

Does not
take into

account the
time since a
player has

last played a
game

Imagine Evan has been playing lots and lots of chess for the last 6 months. His rating
increased from 800 to 1500 (where it is now). Whereas Dirk, on the other hand, hasn’t
played chess for over 1 year! His rating is 1600 which is where he left off last year. In a
scenario where you would want to predict who has the upper hand in this match, most
people would pick Evan. Even though Evan has an objectively lower rating (by 100 points),
he has more practice and has been playing recently so you would not write him off so easily.
The Elo system does not take this into account. It would still predict that Dirk has a 64%
chance of winning.

The issue I have chosen to attempt to address is that the Elo system does not take into account the time since
a player has last played a game.

My New Approach to Addressing the Elo Time Issue

Expected Score in My System
The Elo system uses logistic regression to model the expected score of a player against their opponent.
However, after learning more about the Gaussian (Normal) distribution and its applicability to umpteen
different scenarios, I thought more about how I can apply what we have learned in class to the Elo system.
The logistic regression is used as a PMF to calculate probability of a player beating another. I wondered, why
not use a normal distribution instead to model a player's expected score? To start off, I created a normal that
represents the difference in rating between the two players using the sum of two normals, and . Let𝑋 𝑌 𝑋
represent your rating and represent your opponent's rating, both as normal distributions.𝑌

𝑍 = 𝑌 − 𝑋

𝑌 ∼ 𝑁(µ
𝑌
 , σ

𝑌
2)

𝑋 ∼ 𝑁(µ
𝑋

 , σ
𝑋
2)

∴ Z ∼ 𝑁(µ
𝑌
 − µ

𝑋
 , σ

𝑌
2 + σ

𝑋
2)

The mean is the difference of both players’ current ratings. Now, how do we determine the variance? The
purpose of this system is to include the time since your last game for both you and your opponent as that is

5

the largest contributor to the uncertainty in your rating. Thus, the variance is just the days since the players’
last rated Chess game. This gives me the parameters for Z’s distribution. I used numpy to write code for this:

Then, I created a Normal Distribution using these parameters. This allows me to calculate my expected value
which is a value between 0 and 1. Now, I return the CDF of 0 as that gives me everything to the left of the
curve which is analogous to the expected value of beating your opponent. Imagine your ratings are equal, the
CDF would return 0.5 since it is centered around zero. If you are higher rated it would be a above 0.5 and if
you are lower rated, below 0.5. This method is mentioned in Lecture 10: Normal Guassian, Slide 28:

Now, I have a function that gets me the expected score of a player using a Normal Distribution as opposed to
the Logistic Regression used by the Elo system.

Updating a Player's Rating in My System
The general mechanism is similar to Bayesian Inference as discussed in class. Take player A, for example:

𝑅'
𝐴

 = 𝑅
𝐴

+ ∆𝑅
𝐴

Where is the posterior rating after a result, is the prior rating before the game, and represents a𝑅'
𝐴

𝑅
𝐴

∆𝑅
𝐴

player’s change in rating after the observed outcome of a game. Since I am interested in the time since the last
game, I can include a new factor called the scaling factor as mentioned above. From now onwards, the scaling

factor wil represent as I found it much easier to work with to get more significant in1
𝑑𝑎𝑦𝑠 𝑠𝑖𝑛𝑐𝑒 𝑙𝑎𝑠𝑡 𝑔𝑎𝑚𝑒 ∆𝑅

𝐴

my trials. K is set to a value depending on a player's skill. Imagine Player A beats Player B:

Player A wins - Positive change Player B Loses - Negative change

∆ 𝑅
𝐴

= 𝐸(𝐴)
𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 · 𝐾 ∆ 𝑅

𝐵
= − 1 · 𝐸(𝐵)

𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 · 𝐾

In my code, I kept an array of player ratings and updated that array after a result. Translating this to code:

6

Testing and Results

I spent a while considering how I can actually test my ideas.
It is infeasible to start from the beginning of rated Chess
and parse through all the data from dozens of decades and
rate every player in history based on my system. However,
what I could do is a controlled simulation. For example,
given a series of results in a tournament, what is the Elo
rating and rankings for the world's top 10 players versus the
same players' ratings and rankings using my system? Figure 4
depicts this data; I found "days since last game" using
2700chess.com. I made random pairings and results for 20
games amongst the top 10 players. The reason I chose to do
20 games because it is a manageable number of games to
keep track of and also a reasonable sample to test out.

Figure 4: Top 10 Chess Players in Classical
Chess, Elo rating, and days since last game

Here is a link to a spreadsheet containing all my data and calculations explained below.

Here is my code set up for the data illustrated in Figure 4:

Here are the 20 pairings and results I created:

7

http://2700chess.com
https://docs.google.com/spreadsheets/d/1ev2mV1kaq5z7UOfQivSEWwsc82hhMo_QQB-0tdOpG8A/edit?usp=sharing

Elo Rating System Results
I computed the new Elo ratings for each player using spreadsheet formulas and the International Chess
Federation (FIDE) official Elo rating calculator. Here are the full set of results:

Notice that in Game 1, Ian loses––his initial rating was 2795 and he loses 4.1 points to bring his new rating to
2790.9. In game 2, Ian's old rating is now 2790.9. This updating happens for every player after each game
until the end of the tournament. Here are the final results for the Elo system:

Figure 5: Elo Rating System Tournament Results

Based on the Elo System, the ratings of the world's top 10 players did change a decent amount as seen by the
green and red arrows. However, their rankings stayed the same as indicated by the grey arrows.

My Rating System Results
For a more in-depth breakdown of my code and how it works, refer to my YouTube video. In my tournament
simulation code, I had each player play one another based on the games and results I predetermined. After
dozens of iterations and tweaking, I realised two things: 1) I need additional scaling factors to ensure rating

8

https://ratings.fide.com/calc.phtml?page=change
https://youtu.be/0H7x5v58Fok

increases/decreases are more easily noticeable and interpreted by humans 2) I need some extra cases to break
down how much a player's rating should actually change depending on the time since their last game (scaling
factor, S.F). Here is how I did this:

Additional Scaling Factors

Y = more/less/medium

Based on the special case (below), ther is either a more, medium, or
less change in a player's rating. I decided on these values upon
dozens of iterations; these values showed an interpretable change
in rating and were reasonable as players did not lose/gain
disproportionately.

My new formula (on the left) includes the additional scaling
factors. The days_sf is used to compare two players' days since last
game in the special cases. For example, player 1 not playing for 30
days is pretty much the same time off as player 2 who hasn't played
in 40 days so we treat them as the same. But if someone has not
played in 200 days versus their opponent who hasn't played in 15
days, then we enter the special cases mentioned as 15 * 1.5 < 200.

Special Cases

Note 1: "days" = days since last
game; analogous to S.F used in code
Note 2: These special cases are
explained in more depth in my video

Draw:
1. Same rating and same

days
a. No change in rating

for either
2. Same rating, different

days
a. Higher days gains

less, lower days loses
less

3. Different rating
a. Lower rated gains

medium, higher
rated loses less

Win:
1. Both players playing after a while (90 days)

a. Winner gains less, loser loses less
2. Either of the two players playing after > 50 days

a. winner rating >= losers rating ; winner days >
days * loser days

i. Winner gains more, loses loses medium
b. winner rating >= losers rating ; loser days > days

* winner days
i. Winner gains less, loser loses medium

c. winner rating <= losers rating ; winner days >
days * loser days

i. Winner gains more, loser loses more
d. winner rating <= losers rating ; loser days > days

* winner days
i. Winner gains medium, loser loses more

3. None of the above
a. Winner gains medium, loser loses medium

Here are 2 examples of the cases above (I've explained more of them in my video!) These are direct outputs
from my code for 1 win case and 1 draw case:

Win Case #2d Draw Case #3 - None

9

Alireza has not played in quite a while, but his prior
rating is very much higher than Ian's (~20 pts).
Alireza's expected chance of winning is 0.54 (54%)
taking into account he has not played in about 6
months. After losing to Ian, however, Alireza loses
about 24 pts which is a lot! That is because 1) he
lost to a lower-rated player, and 2) he hasn't played
in a long time so his rating is more volatile than
Ian's. Ian only gained 1.2 pts despite beating a
higher-rated player because the player he beat had
not played in a long time.

Hikaru has a much lower initial rating than
Fabiano––a difference of almost 45 points! On top
of that, Hikaru has not played for almost an entire
year. Thus, it is impressive that he is even able to
compete with players like Fabiano who have been
playing very regularly. Therefore, when they draw,
Hikaru gains quite a few points. Fabiano only loses
a very few points since it is a draw and he has been
playing regularly so his rating is likely very close to
his current rating and he has been playing quite
regularly.

Here are the full table of results after all 20 games are played:

Figure 5: My Rating System Tournament Results

10

The key difference between my system's results after the tournament and the Elo system's is that my system
produced a change in the original rankings. Alireza is much lower ranked now than he was earlier and it is
likely that Anand and Radjabov are no longer in the world's top 10 players after their rating drop! All three of
these players had been out of the game for quite a while and did not perform well in the tournament hence
their drop in rating and the changes in rankings. Hikaru, on the other hand, performed decently with 3 draws
and 1 loss after coming back to the game in nearly a year.

Conclusion and Next Steps

Including a player's time off from the game is crucial in determining their true skill level. Players who haven't
played in a year are definitely not clear favorites against those who have been playing more regularly (even if
their ratings are different). There are players in the world that are inactive and thus when coming back to
playing a tournament, their current rating is not representative of their true rating––as a result, their ratings
should fluctuate more than those playing regularly. This is the exact problem I noticed applied to my own life,
and hence, the reason behind choosing this project. Including this factor does not just apply to Chess, but
other sports as well that use Elo such as Basketball, Football, Baseball, etc.

I feel that my system is feasible to implement but keeping track of a player's last game is an additional data
point that should be taken into consideration. This may be difficult for large chess sites such as chess.com and
lichess.org to implement as they have millions of users. However, I feel this is should be included at least in
elite-level chess where players' rankings and ratings matter very much. In fact, it could be the difference
between them winning and losing a tournament. Moreover, it could promote players to be more active and
participate in more tournaments rather than maintaining their rating and ranking by choosing not to play
select tournaments. Implementing an entire new system for a well-established game such as Chess can be
challenging, but I feel it is an interesting avenue to explore.

There is definitely room for improvement in my system. More iterations and trial and error can be completed
in order to choose the most appropriate additional scaling factors (days_sf, more, medium, less). Additionally,
my code can be further optimised––something that was not my focus given the scope of the project. I can
also explore different variations of the formula I used to calculate the expected score e.g adjusting how the
variance is calculated.

Overall, I really enjoyed this project especially since it is centered around a game that I love: Chess. In this
project, I used concepts learned in CS109 such as a normal distribution, expected scores, logistic regressions,
CDF of a gaussian, axioms of probability, and coding simulations in Python using numpy and scipy. I learned
about how fundamental probability concepts can be applied to complex systems and used in the real world!

11

Bibliography
1. https://2700chess.com/
2. https://ratings.fide.com/calc.phtml?page=change
3. https://docs.scipy.org/doc/scipy/index.html
4. https://www.youtube.com/watch?v=AsYfbmp0To0
5. https://www.chess.com/insights/aryansahai#overview
6. http://angrystatistician.blogspot.com/2015/10/elos-rating-system-as-forgetful.html
7. https://en.m.wikipedia.org/wiki/Elo_rating_system#Selective_pairing
8. https://projects.fivethirtyeight.com/complete-history-of-the-nba/#warriors
9. https://fivethirtyeight.com/features/how-we-calculate-nba-elo-ratings/
10. https://www.youtube.com/watch?v=GTaAWtuLHuo
11. https://ratings.fide.com/calc.phtml?page=change
12. https://www.w3schools.com/python/ref_func_round.asp
13. https://www.freecodecamp.org/news/2f-in-python-what-does-it-mean/#:~:text=The%20%25f%20

formatter%20is%20specifically,point%20number%20is%20rounded%20up.
14. https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norm.html
15. https://en.wikipedia.org/wiki/Logistic_function#Logistic_differential_equation
16. https://mattmazzola.medium.com/understanding-the-elo-rating-system-264572c7a2b4
17. https://www.flaticon.com/free-icon/chess-clock_79851
18. https://www.chess.com/forum/view/community/update-to-badges-should-include-ratings-tiers-ico

ns-for-non-titled
19. https://www.freepnglogos.com/images/chess-39290.html

12

https://2700chess.com/
https://ratings.fide.com/calc.phtml?page=change
https://docs.scipy.org/doc/scipy/index.html
https://www.youtube.com/watch?v=AsYfbmp0To0
https://www.chess.com/insights/aryansahai#overview
http://angrystatistician.blogspot.com/2015/10/elos-rating-system-as-forgetful.html
https://en.m.wikipedia.org/wiki/Elo_rating_system#Selective_pairing
https://projects.fivethirtyeight.com/complete-history-of-the-nba/#warriors
https://fivethirtyeight.com/features/how-we-calculate-nba-elo-ratings/
https://www.youtube.com/watch?v=GTaAWtuLHuo
https://ratings.fide.com/calc.phtml?page=change
https://www.w3schools.com/python/ref_func_round.asp
https://www.freecodecamp.org/news/2f-in-python-what-does-it-mean/#:~:text=The%20%25f%20formatter%20is%20specifically,point%20number%20is%20rounded%20up
https://www.freecodecamp.org/news/2f-in-python-what-does-it-mean/#:~:text=The%20%25f%20formatter%20is%20specifically,point%20number%20is%20rounded%20up
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norm.html
https://en.wikipedia.org/wiki/Logistic_function#Logistic_differential_equation
https://mattmazzola.medium.com/understanding-the-elo-rating-system-264572c7a2b4
https://www.flaticon.com/free-icon/chess-clock_79851
https://www.chess.com/forum/view/community/update-to-badges-should-include-ratings-tiers-icons-for-non-titled
https://www.chess.com/forum/view/community/update-to-badges-should-include-ratings-tiers-icons-for-non-titled
https://www.freepnglogos.com/images/chess-39290.html

