Finding Elo: Restructuring Chess Ratings

Background

In 6th grade, I decided to join the Chess club at my school. The night before our first meeting at 12:30am (a record-breaking time for me to be awake till at the time), I woke up my dad and asked him to teach me how to play chess. We went over the basic rules of how pieces move, and I watched a few YouTube videos on basic openings. With my newfound knowledge, I woke up the next morning and was ready to test my skills against others... Surprisingly, I didn't win a single game.
But from that night onwards, I was hooked. I studied chess openings, obsessed over increasing my chess.com rating, and constantly got click-baited by videos online that would supposedly make me a Grandmaster overnight. To my dismay, that wasn't the case-but, I found a new passion. By 9th grade, I was already playing my second inter-school tournament and our team won a bronze medal! Here are my results as depicted in Figure 1 and a photo from my first tournament in Image 1!

Image 1: My First Tournament

But there was a point where I completely stopped playing chess for 2 years. High School, tell me about it. One day, I went on chess.com and played a game for fun-I got checkmated in less than 20 moves. That's analogous to the outcome of me playing a 1v1 against LeBron James. My true Elo rating decreased dramatically in those 2 years, but I only lost a few rating points!

Figure 1: My First Tournament Results; $5 \mathrm{~W} / 4 \mathrm{~L}$

Thinking about my own experiences made me interested in how a player's time off from playing affects how their rating should increase or decrease when they play again. The current Elo system does not take this into account. Through this paper, I will explore the Chess rating system through a probabilistic lens-incorporating concepts of gaussian distributions, bayesian inference, scaling factors, and code-based simulations. I have created a new rating system that accounts for a player's time since their last game using concepts learnt in CS109.

What is the Elo System?

The Elo system was invented by Árpád Élő, a Hungarian-American physics professor, and was adopted by the US Chess Federation in 1960. It forms the basis of how players are compared to one another (using a numeric scale) in games such as Chess, Basketball, Football, etc. as depicted in Figures 2 and 3:

\＃－	Name	$\stackrel{\mid}{\sim}$	Classic ${ }^{\text {\％}}$
1	Carlsen，Magnus	바ㅌㅡㅡㅡㄹ	2852.6
2	Nepomniachtchi，Ian	（3）	2795.0
3	Ding，Liren	？	2788.0
4	Firouzja，Alireza	－	2785.0
5	Giri，Anish		2768.0
6	Nakamura，Hikaru	喵	2768.0
7	Caruana，Fabiano	單	2766.0
8	So，Wesley	粊	2761.0
9	Anand，Viswanathan	E	2754.0
10	Radjabov，Teimour	c．	2747.0

Figure 2：World Chess Elo Rankings

Figure 3：Warriors Elo Graph 2016－19 Playoffs

How the Elo Rating System Works

Probabilities of Each Outcome

$R_{A}=$ Rating of Player A．
$R_{B}=$ Rating of Player B．
Let＇s break this down into 3 cases where both players plays each other 100 times：
1．If $R_{A}>R_{B}$ ：We expect Player A to have more points than player B i．e >50 points．
2．If $R_{A}=R_{B}$ ：We expect Player A and Player B to have approximately the same number of points ~ 50
3．If $R_{A}<R_{B}$ ：We expect Player A to have less points than player B i．e <50 points．
The Elo formula for calculating Player A＇s expected score against Player B is modelled using a logistic regression．Here is the derivation：

$$
\begin{array}{ll}
\frac{P(A \text { wins })}{P(B \text { wins })}=10^{\frac{R_{B}-R_{A}}{400}} \text { (explained later) } & =P(A \text { wins })\left(1+10^{\frac{R_{B}-R_{A}}{400}}\right)=10^{\frac{R_{B}-R_{A}}{400}} \\
P(A \text { wins })=10^{\frac{R_{B}-R_{A}}{400}} \cdot P(B \text { wins }) & P(A \text { wins })=\frac{10^{\frac{R_{B}-R_{A}}{400}}}{1+1^{\frac{R_{B}-R_{A}}{400}}} \\
P(A \text { wins })=10^{\frac{R_{B}-R_{A}}{400}} \cdot(1-P(A \text { wins })) & \text { Using a a special definition of a logistic curve (baseic) froo } \\
P(A \text { wins })=10^{\frac{R_{B}-R_{A}}{400}}-10^{\frac{R_{B}-R_{A}}{400}} P(A \text { wins }) & \text { Differential Equation: (a complex proof that is not the }) \\
P(A \text { wins })+10^{\frac{R_{B}-R_{A}}{400}} P(A \text { wins })=10^{\frac{R_{B}-R_{A}}{400}} & P(A \text { wins })=\frac{1}{1+10^{\frac{R_{B}-R_{A}}{400}}}
\end{array}
$$

$P(B$ wins $)$ uses the same principle but has $R_{A}-R_{B}$ as we compare Player B＇s strength relative to Player A：

$$
P(B \text { wins })=\frac{1}{1+10^{\frac{p_{A}-R_{B}}{400}}}
$$

Now，we can extend Axiom 3 of Probability（as discussed in Lecture 3：Probability，Slide 18）that states：
＂If E and F are mutually exclusive（i．e $E \cap F=\emptyset$ ），then $P(E \cup F)=P(E)+P(F)$＂

Our sample space, S, is the probability of Player A winning, $P(A)$, Player B winning, $P(B)$. If both of these are equal to 0.5 then expected outcome is a draw! $P(A)$ and $P(B)$ cannot occur simultaneously-they are mutually exclusive. Thus, we find that:

$$
\begin{gathered}
P(A \cup B)=P(A)+P(B) \\
P(S)=P(A)+P(B)
\end{gathered}
$$

By Axiom 2 of Probability, $P(S)=1$ and by Axiom 1 of Probability any probability must range from $[0,1]$

$$
\begin{gathered}
1=P(A)+P(B) \\
\therefore P(B)=1-P(A)
\end{gathered}
$$

Expected Score

$P(A$ wins $)$ is also known as the Expected Score, $E(A)$, of player A. That is, the expected number of points they will score against a player of a certain rating. Recall that point range from 0 for a loss, 0.5 for a draw, and 1 for a win. However, while the outcomes may be fixed numbers, the expected value does not-it need not be either $0,0.5$, or 1 -it can take on any value from 0 to 1 , inclusive. The way the logistic regression works is: if player A has a rating 400 points higher than player B, they are 10 times more likely to win against player B; the base value of 400 was chosen based on the scale developed uniquely for the Elo system. We can show this concept using the formula we derived above:

$$
\begin{gathered}
E(A)=\frac{1}{1+10^{\frac{R_{-}-R_{A}}{400}}}=\frac{1}{1+10^{\frac{-400}{400}}}=\frac{1}{1.1}=0.9 \Rightarrow 90 \% \text { chance of winning } \\
E(B)=\frac{1}{1+10^{\frac{R_{A}-R_{B}}{400}}}=\frac{1}{1+10^{\frac{400}{400}}}=\frac{1}{11}=0.09 \Rightarrow 9 \% \text { chance of winning } \\
\frac{E(A)}{E(B)}=\frac{0.9}{0.09}=10 \Rightarrow \text { player A is } 10 \text { times more likely to win against player B }
\end{gathered}
$$

Updating a Player's Elo Rating

We now know how the Elo system calculates a player's expected score, but how does it update their rating?
Let:
$R_{A}=$ player A's current rating
$R_{A}^{\prime}=$ player A's new rating after a result
$E_{A}=$ the expected value of player A
$S_{A}=$ player A's actual score i.e 1 for win, 0 for loss, 0.5 for draw
$K=$ scaling factor (higher s.f corresponds to alower rating/less experience. 40 is the highest in Elo)

$$
R_{A}^{\prime}=R_{A}+K\left(S_{A}-E_{A}\right)
$$

Let's do an example, but I'm tired of arbitrary players A and B. In CS109, one of the things I always look forward to is Jerry's "The Day's CS109 Briefing" email. I particularly enjoy the sections about Doris. Here are two snippets that really caught my attention:

Date: Mon 1/30/2023

just as we were leaving, Doris met another dog I'm convinced is The One. This new crush is an English bulldog named (a) Dirk who lives with his humans about 500 feet from us. The Mrs. Bennett in me is overjoyed.

Date: Wed 2/1/2023

Oh, one thing: Doris dumped Dirk. She's likes Evan now.

Dirk is upset-he was dumped in 3 days?! He challenges Evan to a game of (dog) Chess in hopes to win Doris over...after a grueling match, Dirk wins! Let's see what their new ratings are when given their initial ratings: $R_{D}=1600$ and $R_{E}=1500$ (let $\mathrm{K}=40$). We need to first calculate their expected scores:

$$
\begin{gathered}
E_{D}=\frac{1}{1+10^{\frac{R_{E}-R_{0}}{500}}}=\frac{1}{1+10^{\frac{1500-1600}{490}}}=\frac{1}{1+10^{-0.25}}=0.64 \\
E_{E}=\frac{1}{1+10^{\frac{R_{D}-R_{E}}{400}}}=\frac{1}{1+10^{\frac{150001500}{400}}}=\frac{1}{1+10^{0.25}}=0.36\left(=1-E_{D}\right)
\end{gathered}
$$

We can use a graphical approach to visualize the logistic regression and Dirk's expected number of points:

Graph 1: x -axis measures a player's rating and the $\mathrm{x}=1600$ line represents Dirk's rating. The y -axis is the expected points when playing against Evan whose rating is 1500 . This yields 0.64 . Play around with it here!

Dirk's New Rating

Evan's New Rating

$$
\begin{aligned}
& R_{D}^{\prime}=R_{D}+K\left(S_{D}-E_{D}\right) \\
& =R_{D}+K\left(S_{D}-E_{D}\right) \\
& =1600+40(1-0.64) \\
& =1600+40(0.32) \\
& =1600+14.4 \\
& R_{D}^{\prime}=1614.4
\end{aligned}
$$

$$
R_{E}^{\prime}=R_{E}+K\left(S_{E}-E_{E}\right)
$$

$$
=R_{D}+K\left(S_{D}-E_{D}\right)
$$

$$
=1600+40(1-0.64) \quad=1600+40(0-0.36)
$$

$$
=1600+40(0.32) \quad=1500+40(-0.36)
$$

$$
=1600+14.4 \quad=1600-14.4
$$

$$
R_{E}^{\prime}=1585.6
$$

While Dirk won the Chess game, he didn't win Doris back; I guess she's not interested after their antics:
both Evan and Dirk along with their doggy moms and dads. Initially, E and D are circling around each other in that way that dogs do, but then Dirk sees Doris and Evan sees her about three seconds later. I fully expected Doris to be shaken, but she delivered the best side eye I've ever seen out her (note: she's

Issues with the Elo System and Focus of this Paper

While the Elo system works very well, there are 2 primary flaws I noticed:

$\left.$| Critique | Explanation |
| :---: | :--- |
| Does not | |
| account | |
| for how a | |
| player | |
| wins, | |
| draws, or | |
| loses | | | If Dirk had beat Evan simply because Evan ran out of time despite Evan crushing Dirk in |
| :--- |
| the game, does that actually make Dirk a better player? Why should Evan lose 14.4 points |
| for moving his pieces too slowly? It would be fairer for him to only lose half of those points. |
| On the other hand, if Dirk had won because Evan resigned and accepted defeat, I feel that is |
| a more legitimate method of being a better chess player. Though, this depends on the |
| definition of what makes someone a "better" chess player. |
| These are only a couple of examples. However, I feel that these concerns are not practical |
| for chess rating systems to incorporate. It may even require human judgment, and keeping |
| track of many factors becomes difficult, especially for chess sites that have millions of users. | \right\rvert\,

The issue I have chosen to attempt to address is that the Elo system does not take into account the time since a player has last played a game.

My New Approach to Addressing the Elo Time Issue

Expected Score in My System

The Elo system uses logistic regression to model the expected score of a player against their opponent. However, after learning more about the Gaussian (Normal) distribution and its applicability to umpteen different scenarios, I thought more about how I can apply what we have learned in class to the Elo system. The logistic regression is used as a PMF to calculate probability of a player beating another. I wondered, why not use a normal distribution instead to model a player's expected score? To start off, I created a normal that represents the difference in rating between the two players using the sum of two normals, X and Y. Let X represent your rating and Y represent your opponent's rating, both as normal distributions.

$$
\begin{gathered}
Z=Y-X \\
Y \sim N\left(\mu_{Y}, \sigma_{Y}^{2}\right) \\
X \sim N\left(\mu_{X}, \sigma_{X}^{2}\right) \\
\therefore Z \sim N\left(\mu_{Y}-\mu_{X}, \sigma_{Y}^{2}+\sigma_{X}^{2}\right)
\end{gathered}
$$

The mean is the difference of both players' current ratings. Now, how do we determine the variance? The purpose of this system is to include the time since your last game for both you and your opponent as that is
the largest contributor to the uncertainty in your rating. Thus, the variance is just the days since the players' last rated Chess game. This gives me the parameters for Z's distribution. I used numpy to write code for this:

```
def expected_score(player_rating, opponent_rating, opponent_scaling_factor, my_scaling_factor):
    mu = opponent_rating - player_rating
    sigma = np.sqrt((opponent_scaling_factor) ** 2 + (my_scaling_factor) ** 2)
```

Then, I created a Normal Distribution using these parameters. This allows me to calculate my expected value which is a value between 0 and 1 . Now, I return the CDF of 0 as that gives me everything to the left of the curve which is analogous to the expected value of beating your opponent. Imagine your ratings are equal, the CDF would return 0.5 since it is centered around zero. If you are higher rated it would be a above 0.5 and if you are lower rated, below 0.5. This method is mentioned in Lecture 10: Normal Guassian, Slide 28:

```
def expected_score(player_rating, opponent_rating, opponent_scaling_factor, my_scaling_factor):
mu = opponent_rating - player_rating
sigma = np.sqrt((opponent_scaling_factor) ** 2 + (my_scaling_factor) ** 2)
normal = stats.norm(mu, sigma)
return normal.cdf(0)
```

Now, I have a function that gets me the expected score of a player using a Normal Distribution as opposed to the Logistic Regression used by the Elo system.

Updating a Player's Rating in My System

The general mechanism is similar to Bayesian Inference as discussed in class. Take player A, for example:

$$
R_{A}^{\prime}=R_{A}+\Delta R_{A}
$$

Where R_{A}^{\prime} is the posterior rating after a result, R_{A} is the prior rating before the game, and ΔR_{A} represents a player's change in rating after the observed outcome of a game. Since I am interested in the time since the last game, I can include a new factor called the scaling factor as mentioned above. From now onwards, the scaling factor wil represent $\frac{1}{\text { days since last game }}$ as I found it much easier to work with to get more significant ΔR_{A} in my trials. K is set to a value depending on a player's skill. Imagine Player A beats Player B:

Player A wins - Positive change

$$
\Delta R_{A}=\frac{E(A)}{\text { scaling factor } \cdot K}
$$

Player B Loses - Negative change

$$
\Delta R_{B}=\frac{-1 \cdot E(B)}{\text { scaling factor } \cdot K}
$$

In my code, I kept an array of player ratings and updated that array after a result. Translating this to code:
delta $=($ expected_score1) / (player1_sf * K_factor)
player_ratings[index_1] += delta
delta $=(-1 *$ expected_score2) / (player2_sf * K_factor)
player_ratings[index_2] += delta

Testing and Results

I spent a while considering how I can actually test my ideas. It is infeasible to start from the beginning of rated Chess and parse through all the data from dozens of decades and rate every player in history based on my system. However, what I could do is a controlled simulation. For example, given a series of results in a tournament, what is the Elo rating and rankings for the world's top 10 players versus the same players' ratings and rankings using my system? Figure 4 depicts this data; I found "days since last game" using $\underline{2700}$ chess.com. I made random pairings and results for 20 games amongst the top 10 players. The reason I chose to do 20 games because it is a manageable number of games to keep track of and also a reasonable sample to test out.

World Top 10 Chess Players (Classical)			
Ranking	Name	Rating	Days since last game
1	Magnus	2852.6	42
2	lan	2795	15
3	Ding	2788	49
4	Alireza	2785	181
5	Anish	2768	15
6	Hikaru	2768	342
7	Wesley	2766	42
8	Fabi	2761	15
9	Anand	2754	154
10	Radjabov	2747	251

Figure 4: Top 10 Chess Players in Classical Chess, Elo rating, and days since last game

Here is a link to a spreadsheet containing all my data and calculations explained below.
Here is my code set up for the data illustrated in Figure 4:

```
names = np.array(['Magnus', 'Ian', 'Ding', 'Alireza', 'Anish', 'Hikaru', 'Wesley', 'Fabiano', 'Anand', 'Radjabov']
player_ratings = np.array([2852.6, 2795.0, 2788.0, 2785.0, 2768.0, 2768.0, 2766.0, 2761.0, 2754.0, 2747.0])
scaling_factors = np.array([42, 15, 49, 181, 15, 342, 42, 15, 154, 251])
scaling_factors = 1/scaling_factors
```

Here are the 20 pairings and results I created:

All Results				Player Scores by Game	
Game	Result	Game	Result		
1	Magnus beats lan	11	Hikaru draws Fabiano		
2	lan beats Radjabov	12	Wesley draws Ding	Magnus (2852.6): 1, 1, 0.5, 1	
3	Ding draws Alireza	13	Anand beats Radjabov	Ian (2795): 0, 1, 1, 1	
4	Anish beats Hikaru	14	Magnus draws Ding	Ding (2788): 0.5, 1, 0.5, 0.5	
5	Wesley beats Anand	15	lan beats Alireza	Anish (2785): 0.5, 1, 0, 0.5, 0	
6	Anish draws Fabiano: 1, 0.5, 0.5, 0	16	Anish draws Alireza	Hikaru (2768): 0, 0.5, 0.5, 0.5	
7	Radjabov draws Hikaru	17	lan beats Fabiano	Fabiano (2766): 0.5, 0.5, 0, 1	
8	Ding beats Anand	18	Magnus beats Anish	Wesley (2761): 1, 0, 0.5, 0.5	
9	Magnus beats Wesley	19	Wesley draws Hikaru	Anand (2754): 0, 0, 0.5, 1	
10	Alireza beats Radjabov	20	Fabiano beats Alireza	Radjabov (2747): 0, 0.5, 0, 0	

Elo Rating System Results

I computed the new Elo ratings for each player using spreadsheet formulas and the International Chess Federation (FIDE) official Elo rating calculator. Here are the full set of results:

Game 1: Magnus beats lan			Game 5: Wesley beats Anand			Game 9: Magnus beats Wesley			Game 13: Anand beats Radjaboy			Game 17: Ian beats Fabiano		
Name	Old	New												
Magnus	2852.6	2856.7	Wesley	2761	2765.9	Magnus	2856.7	2860.5	Anand	2744.6	2749.6	lan	2800.2	2804.6
lan	2795	2790.9	Anand	2754	2749.1	Wesley	2765.9	2762.1	Radjabov	2742.7	2737.7	Fabiano	2754.4	2750
Game 2: lan beats Radjabov			Game 6: Anish draws Fabiano			Game 10: Alireza beats Radjabov			Game 14: Magnus draws Ding			Game 18: Magnus beats Anish		
Name	Old	New												
lan	2790.9	2795.3	Anish	2773	2772.7	Alireza	2785	2789.5	Magnus	2860.5	2859.5	Magnus	2859.5	2863.3
Radjabov	2747	2742.6	Fabiano	2754	2754.3	Radjabov	2747.2	2742.7	Ding	2792.1	2793.1	Anish	2772.9	2769.1
Game 3: Ding draws Alireza			Game 7: Radjabov draws Hikaru			Game 11: Hikaru draws Fabiano			Game 15: lan beats Alireza			Game 19: Hikaru draws Wesley		
Name	Old	New												
Ding	2788	2788	Radjabov	2747	2747.2	Hikaru	2762.8	2762.7	lan	2795.3	2800.2	Wesley	2762.5	2758.7
Alireza	2785	2785	Hikaru	2763	2762.8	Fabiano	2754.3	2754.4	Alireza	2789.5	2784.6	Hikaru	2762.7	2758.9
Game 4: Anish beats Hikaru			Game 8: Ding beats Anand			Game 12: Wesley draws Ding			Game 16: Anish draws Alireza			Game 20: Fabiano beats Alireza		
Name	Old	New												
Anish	2768	2773	Ding	2788	2792.5	Wesley	2762.1	2762.5	Anish	2772.7	2772.9	Fabiano	2750	2755.5
Hikaru	2768	2763	Anand	2749.1	2744.6	Ding	2792.5	2792.1	Alireza	2784.6	2784.4	Alireza	2784.4	2778.9

Notice that in Game 1, Ian loses-his initial rating was 2795 and he loses 4.1 points to bring his new rating to 2790.9. In game 2, Ian's old rating is now 2790.9. This updating happens for every player after each game until the end of the tournament. Here are the final results for the Elo system:

Elo System						
Name	Old Rank	New Rank	Old Rating	New Rating	Change	
Magnus	1	1	2852.6	2863.3	10.7	
lan	2	2	2795	2804.6	9.6	
Ding	3	3	2788	2793.1	5.1	
Alireza	4	4	2785	2778.9	-6.1	
Anish	5	5	2768	2769.1	1.1	
Hikaru	6	6	2768	2758.9	-9.1	
Wesley	7	7	2766	2758.7	-7.3	
Fabiano	8	8	2761	2755.5	-5.5	
Anand	9	9	2754	2749.6	-4.4	
Radjabov	10	10	2747	2737.7	-9.3	

Figure 5: Elo Rating System Tournament Results
Based on the Elo System, the ratings of the world's top 10 players did change a decent amount as seen by the green and red arrows. However, their rankings stayed the same as indicated by the grey arrows.

My Rating System Results

For a more in-depth breakdown of my code and how it works, refer to my YouTube video. In my tournament simulation code, I had each player play one another based on the games and results I predetermined. After dozens of iterations and tweaking, I realised two things: 1) I need additional scaling factors to ensure rating
increases/decreases are more easily noticeable and interpreted by humans 2) I need some extra cases to break down how much a player's rating should actually change depending on the time since their last game (scaling factor, S.F). Here is how I did this:

	Additional Scaling F
```\# additional scaling factors days_sf = 1.5 more \(=0.4\) medium \(=0.6\) less \(=0.8\)```$\mathrm{Y}=$ more $/$ less $/$ medium    $\underline{\text { Win: }}$ Loss:   $\Delta R_{A}=\frac{E(A)}{S \cdot F \cdot Y \cdot K}$ $\Delta R_{B}=\frac{-E(B)}{S \cdot F \cdot Y \cdot K}$	Based on the special case (below), ther is either a more, medium, or less change in a player's rating. I decided on these values upon dozens of iterations; these values showed an interpretable change in rating and were reasonable as players did not lose/gain disproportionately.   My new formula (on the left) includes the additional scaling factors. The days_sf is used to compare two players' days since last game in the special cases. For example, player 1 not playing for 30 days is pretty much the same time off as player 2 who hasn't played in 40 days so we treat them as the same. But if someone has not played in 200 days versus their opponent who hasn't played in 15 days, then we enter the special cases mentioned as $15 * 1.5<200$.
Special Cases	
Note 1: "days" = days since last game; analogous to S .F used in code Note 2: These special cases are explained in more depth in my video   Draw:   1. Same rating and same days   a. No change in rating for either   2. Same rating, different days   a. Higher days gains less, lower days loses less   3. Different rating   a. Lower rated gains medium, higher rated loses less	Win:   1. Both players playing after a while ( 90 days)   a. Winner gains less, loser loses less   2. Either of the two players playing after $>50$ days   a. winner rating $>=$ losers rating ; winner days $>$ days * loser days   i. Winner gains more, loses loses medium   b. winner rating $>=$ losers rating ; loser days $>$ days * winner days   i. Winner gains less, loser loses medium   c. winner rating <= losers rating; winner days > days $*$ loser days   i. Winner gains more, loser loses more   d. winner rating $<=$ losers rating ; loser days $>$ days * winner days   i. Winner gains medium, loser loses more   3. None of the above   a. Winner gains medium, loser loses medium

Here are 2 examples of the cases above (I've explained more of them in my video!) These are direct outputs from my code for 1 win case and 1 draw case:

Win Case \#2d	Draw Case \#3 - None



Alireza has not played in quite a while, but his prior rating is very much higher than Ian's ( $\sim 20 \mathrm{pts}$ ). Alireza's expected chance of winning is $0.54(54 \%)$ taking into account he has not played in about 6 months. After losing to Ian, however, Alireza loses about 24 pts which is a lot! That is because 1) he lost to a lower-rated player, and 2) he hasn't played in a long time so his rating is more volatile than Ian's. Ian only gained 1.2 pts despite beating a higher-rated player because the player he beat had not played in a long time.


Hikaru has a much lower initial rating than Fabiano-a difference of almost 45 points! On top of that, Hikaru has not played for almost an entire year. Thus, it is impressive that he is even able to compete with players like Fabiano who have been playing very regularly. Therefore, when they draw, Hikaru gains quite a few points. Fabiano only loses a very few points since it is a draw and he has been playing regularly so his rating is likely very close to his current rating and he has been playing quite regularly.

Here are the full table of results after all 20 games are played:

My System						
Name	Old Rank	New Rank	Old Rating	New Rating	Change	
Magnus	1	1	2852.6	2871.8	19.2	
lan	2	2	2795	2799.4	4.4	
Ding	3	3	2788	2792.2	4.2	
Alireza	4	8	2785	2752.3	-32.7	
Anish	5	5	2768	2769.4	1.4	
Hikaru	6	4	2768	2769.9	1.9	
Wesley	7	6	2766	2768.2	1.2	
Fabiano	8	7	2761	2762.6	1.6	
Anand	9	9	2754	2741.3	-12.7	
Radjabov	10	10	2747	2720.2	-26.8	

Figure 5: My Rating System Tournament Results

The key difference between my system's results after the tournament and the Elo system's is that my system produced a change in the original rankings. Alireza is much lower ranked now than he was earlier and it is likely that Anand and Radjabov are no longer in the world's top 10 players after their rating drop! All three of these players had been out of the game for quite a while and did not perform well in the tournament hence their drop in rating and the changes in rankings. Hikaru, on the other hand, performed decently with 3 draws and 1 loss after coming back to the game in nearly a year.

## Conclusion and Next Steps

Including a player's time off from the game is crucial in determining their true skill level. Players who haven't played in a year are definitely not clear favorites against those who have been playing more regularly (even if their ratings are different). There are players in the world that are inactive and thus when coming back to playing a tournament, their current rating is not representative of their true rating-as a result, their ratings should fluctuate more than those playing regularly. This is the exact problem I noticed applied to my own life, and hence, the reason behind choosing this project. Including this factor does not just apply to Chess, but other sports as well that use Elo such as Basketball, Football, Baseball, etc.

I feel that my system is feasible to implement but keeping track of a player's last game is an additional data point that should be taken into consideration. This may be difficult for large chess sites such as chess.com and lichess.org to implement as they have millions of users. However, I feel this is should be included at least in elite-level chess where players' rankings and ratings matter very much. In fact, it could be the difference between them winning and losing a tournament. Moreover, it could promote players to be more active and participate in more tournaments rather than maintaining their rating and ranking by choosing not to play select tournaments. Implementing an entire new system for a well-established game such as Chess can be challenging, but I feel it is an interesting avenue to explore.

There is definitely room for improvement in my system. More iterations and trial and error can be completed in order to choose the most appropriate additional scaling factors (days_sf, more, medium, less). Additionally, my code can be further optimised—something that was not my focus given the scope of the project. I can also explore different variations of the formula I used to calculate the expected score e.g adjusting how the variance is calculated.

Overall, I really enjoyed this project especially since it is centered around a game that I love: Chess. In this project, I used concepts learned in CS109 such as a normal distribution, expected scores, logistic regressions, CDF of a gaussian, axioms of probability, and coding simulations in Python using numpy and scipy. I learned about how fundamental probability concepts can be applied to complex systems and used in the real world!

## Bibliography

1. https://2700chess.com/
2. https://ratings.fide.com/calc.phtml? page=change
3. https://docs.scipy.org/doc/scipy/index.html
4. https://www.youtube.com/watch?v=AsYfbmp0To0
5. https://www.chess.com/insights/aryansahai\#overview
6. http:// angrystatistician.blogspot.com/2015/10/elos-rating-system-as-forgetful.html
7. https://en.m.wikipedia.org/wiki/Elo rating_system\#Selective pairing
8. https://projects.fivethirtyeight.com/complete-history-of-the-nba/\#warriors
9. https:// fivethirtyeight.com/features/how-we-calculate-nba-elo-ratings/
10. https://www.youtube.com/watch? v=GTaAWtuLHuo
11. https://ratings.fide.com/calc.phtml?page=change
12. https://www.w3schools.com/python/ref func round.asp
13. https://www.freecodecamp.org/news/2f-in-python-what-does-it-mean/\#:~:text=The $\% 20 \% 25 f \% 20$ formatter $\% 20$ is $\% 20$ specificallypoint $\% 20$ number $\% 20$ is $\% 20$ rounded $\% 20$ up.
14. https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norm.html
15. https://en.wikipedia.org/wiki/Logistic function\#Logistic differential equation
16. https:// mattmazzola.medium.com/understanding-the-elo-rating-system-264572c7a2b4
17. https://www.flaticon.com/free-icon/chess-clock 79851
18. https://www.chess.com/forum/view/community/update-to-badges-should-include-ratings-tiers-ico ns-for-non-titled
19. https://www.freepnglogos.com/images/chess-39290.html
